3.305 \(\int \cot ^6(e+f x) \sqrt{a+b \tan ^2(e+f x)} \, dx\)

Optimal. Leaf size=167 \[ -\frac{\left (15 a^2-5 a b-2 b^2\right ) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a^2 f}-\frac{\sqrt{a-b} \tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{f}-\frac{\cot ^5(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{5 f}+\frac{(5 a-b) \cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a f} \]

[Out]

-((Sqrt[a - b]*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/f) - ((15*a^2 - 5*a*b - 2*b^2)*C
ot[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(15*a^2*f) + ((5*a - b)*Cot[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2])/(15
*a*f) - (Cot[e + f*x]^5*Sqrt[a + b*Tan[e + f*x]^2])/(5*f)

________________________________________________________________________________________

Rubi [A]  time = 0.230896, antiderivative size = 167, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 6, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.24, Rules used = {3670, 475, 583, 12, 377, 203} \[ -\frac{\left (15 a^2-5 a b-2 b^2\right ) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a^2 f}-\frac{\sqrt{a-b} \tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{f}-\frac{\cot ^5(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{5 f}+\frac{(5 a-b) \cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a f} \]

Antiderivative was successfully verified.

[In]

Int[Cot[e + f*x]^6*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-((Sqrt[a - b]*ArcTan[(Sqrt[a - b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/f) - ((15*a^2 - 5*a*b - 2*b^2)*C
ot[e + f*x]*Sqrt[a + b*Tan[e + f*x]^2])/(15*a^2*f) + ((5*a - b)*Cot[e + f*x]^3*Sqrt[a + b*Tan[e + f*x]^2])/(15
*a*f) - (Cot[e + f*x]^5*Sqrt[a + b*Tan[e + f*x]^2])/(5*f)

Rule 3670

Int[((d_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol]
 :> With[{ff = FreeFactors[Tan[e + f*x], x]}, Dist[(c*ff)/f, Subst[Int[(((d*ff*x)/c)^m*(a + b*(ff*x)^n)^p)/(c^
2 + ff^2*x^2), x], x, (c*Tan[e + f*x])/ff], x]] /; FreeQ[{a, b, c, d, e, f, m, n, p}, x] && (IGtQ[p, 0] || EqQ
[n, 2] || EqQ[n, 4] || (IntegerQ[p] && RationalQ[n]))

Rule 475

Int[((e_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[((e*x)^(m
 + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*e*(m + 1)), x] - Dist[1/(a*e^n*(m + 1)), Int[(e*x)^(m + n)*(a + b*
x^n)^p*(c + d*x^n)^(q - 1)*Simp[c*b*(m + 1) + n*(b*c*(p + 1) + a*d*q) + d*(b*(m + 1) + b*n*(p + q + 1))*x^n, x
], x], x] /; FreeQ[{a, b, c, d, e, p}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[0, q, 1] && LtQ[m, -1] &&
IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 583

Int[((g_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)),
x_Symbol] :> Simp[(e*(g*x)^(m + 1)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q + 1))/(a*c*g*(m + 1)), x] + Dist[1/(a*c*
g^n*(m + 1)), Int[(g*x)^(m + n)*(a + b*x^n)^p*(c + d*x^n)^q*Simp[a*f*c*(m + 1) - e*(b*c + a*d)*(m + n + 1) - e
*n*(b*c*p + a*d*q) - b*e*d*(m + n*(p + q + 2) + 1)*x^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, g, p, q}, x] &&
 IGtQ[n, 0] && LtQ[m, -1]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 377

Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Subst[Int[1/(c - (b*c - a*d)*x^n), x]
, x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \cot ^6(e+f x) \sqrt{a+b \tan ^2(e+f x)} \, dx &=\frac{\operatorname{Subst}\left (\int \frac{\sqrt{a+b x^2}}{x^6 \left (1+x^2\right )} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\cot ^5(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{5 f}+\frac{\operatorname{Subst}\left (\int \frac{-5 a+b-4 b x^2}{x^4 \left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{5 f}\\ &=\frac{(5 a-b) \cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a f}-\frac{\cot ^5(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{5 f}-\frac{\operatorname{Subst}\left (\int \frac{-15 a^2+5 a b+2 b^2-2 (5 a-b) b x^2}{x^2 \left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{15 a f}\\ &=-\frac{\left (15 a^2-5 a b-2 b^2\right ) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a^2 f}+\frac{(5 a-b) \cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a f}-\frac{\cot ^5(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{5 f}+\frac{\operatorname{Subst}\left (\int -\frac{15 a^2 (a-b)}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{15 a^2 f}\\ &=-\frac{\left (15 a^2-5 a b-2 b^2\right ) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a^2 f}+\frac{(5 a-b) \cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a f}-\frac{\cot ^5(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{5 f}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{\left (1+x^2\right ) \sqrt{a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f}\\ &=-\frac{\left (15 a^2-5 a b-2 b^2\right ) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a^2 f}+\frac{(5 a-b) \cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a f}-\frac{\cot ^5(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{5 f}-\frac{(a-b) \operatorname{Subst}\left (\int \frac{1}{1-(-a+b) x^2} \, dx,x,\frac{\tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{f}\\ &=-\frac{\sqrt{a-b} \tan ^{-1}\left (\frac{\sqrt{a-b} \tan (e+f x)}{\sqrt{a+b \tan ^2(e+f x)}}\right )}{f}-\frac{\left (15 a^2-5 a b-2 b^2\right ) \cot (e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a^2 f}+\frac{(5 a-b) \cot ^3(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{15 a f}-\frac{\cot ^5(e+f x) \sqrt{a+b \tan ^2(e+f x)}}{5 f}\\ \end{align*}

Mathematica [C]  time = 14.2186, size = 339, normalized size = 2.03 \[ -\frac{\cos ^4(e+f x) \cot ^5(e+f x) \left (\frac{b \tan ^2(e+f x)}{a}+1\right ) \left (8 (a-b) \tan ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^3 \text{HypergeometricPFQ}\left (\{2,2,2\},\left \{1,\frac{3}{2}\right \},\frac{(a-b) \sin ^2(e+f x)}{a}\right )+8 \tan ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )^2 \left (-2 a^2+a b \left (3 \tan ^2(e+f x)+2\right )-3 b^2 \tan ^2(e+f x)\right ) \text{Hypergeometric2F1}\left (2,2,\frac{3}{2},\frac{(a-b) \sin ^2(e+f x)}{a}\right )+\frac{a^2 \sec ^4(e+f x) \left (3 a^2-4 a b \tan ^2(e+f x)+8 b^2 \tan ^4(e+f x)\right ) \left (\sqrt{\frac{(a-b) \sin ^2(e+f x)}{a}} \sin ^{-1}\left (\sqrt{\frac{(a-b) \sin ^2(e+f x)}{a}}\right )+\sqrt{\frac{\cos ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )}{a}}\right )}{\sqrt{\frac{\cos ^2(e+f x) \left (a+b \tan ^2(e+f x)\right )}{a}}}\right )}{15 a^3 f \sqrt{a+b \tan ^2(e+f x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Cot[e + f*x]^6*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-(Cos[e + f*x]^4*Cot[e + f*x]^5*(1 + (b*Tan[e + f*x]^2)/a)*(8*(a - b)*HypergeometricPFQ[{2, 2, 2}, {1, 3/2}, (
(a - b)*Sin[e + f*x]^2)/a]*Tan[e + f*x]^2*(a + b*Tan[e + f*x]^2)^3 + 8*Hypergeometric2F1[2, 2, 3/2, ((a - b)*S
in[e + f*x]^2)/a]*Tan[e + f*x]^2*(a + b*Tan[e + f*x]^2)^2*(-2*a^2 - 3*b^2*Tan[e + f*x]^2 + a*b*(2 + 3*Tan[e +
f*x]^2)) + (a^2*Sec[e + f*x]^4*(3*a^2 - 4*a*b*Tan[e + f*x]^2 + 8*b^2*Tan[e + f*x]^4)*(ArcSin[Sqrt[((a - b)*Sin
[e + f*x]^2)/a]]*Sqrt[((a - b)*Sin[e + f*x]^2)/a] + Sqrt[(Cos[e + f*x]^2*(a + b*Tan[e + f*x]^2))/a]))/Sqrt[(Co
s[e + f*x]^2*(a + b*Tan[e + f*x]^2))/a]))/(15*a^3*f*Sqrt[a + b*Tan[e + f*x]^2])

________________________________________________________________________________________

Maple [C]  time = 0.401, size = 6894, normalized size = 41.3 \begin{align*} \text{output too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cot(f*x+e)^6*(a+b*tan(f*x+e)^2)^(1/2),x)

[Out]

result too large to display

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \tan \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{6}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^6*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*cot(f*x + e)^6, x)

________________________________________________________________________________________

Fricas [A]  time = 2.42358, size = 902, normalized size = 5.4 \begin{align*} \left [\frac{15 \, a^{2} \sqrt{-a + b} \log \left (-\frac{{\left (a^{2} - 8 \, a b + 8 \, b^{2}\right )} \tan \left (f x + e\right )^{4} - 2 \,{\left (3 \, a^{2} - 4 \, a b\right )} \tan \left (f x + e\right )^{2} + a^{2} - 4 \,{\left ({\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{3} - a \tan \left (f x + e\right )\right )} \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{-a + b}}{\tan \left (f x + e\right )^{4} + 2 \, \tan \left (f x + e\right )^{2} + 1}\right ) \tan \left (f x + e\right )^{5} - 4 \,{\left ({\left (15 \, a^{2} - 5 \, a b - 2 \, b^{2}\right )} \tan \left (f x + e\right )^{4} -{\left (5 \, a^{2} - a b\right )} \tan \left (f x + e\right )^{2} + 3 \, a^{2}\right )} \sqrt{b \tan \left (f x + e\right )^{2} + a}}{60 \, a^{2} f \tan \left (f x + e\right )^{5}}, -\frac{15 \, \sqrt{a - b} a^{2} \arctan \left (-\frac{2 \, \sqrt{b \tan \left (f x + e\right )^{2} + a} \sqrt{a - b} \tan \left (f x + e\right )}{{\left (a - 2 \, b\right )} \tan \left (f x + e\right )^{2} - a}\right ) \tan \left (f x + e\right )^{5} + 2 \,{\left ({\left (15 \, a^{2} - 5 \, a b - 2 \, b^{2}\right )} \tan \left (f x + e\right )^{4} -{\left (5 \, a^{2} - a b\right )} \tan \left (f x + e\right )^{2} + 3 \, a^{2}\right )} \sqrt{b \tan \left (f x + e\right )^{2} + a}}{30 \, a^{2} f \tan \left (f x + e\right )^{5}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^6*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/60*(15*a^2*sqrt(-a + b)*log(-((a^2 - 8*a*b + 8*b^2)*tan(f*x + e)^4 - 2*(3*a^2 - 4*a*b)*tan(f*x + e)^2 + a^2
 - 4*((a - 2*b)*tan(f*x + e)^3 - a*tan(f*x + e))*sqrt(b*tan(f*x + e)^2 + a)*sqrt(-a + b))/(tan(f*x + e)^4 + 2*
tan(f*x + e)^2 + 1))*tan(f*x + e)^5 - 4*((15*a^2 - 5*a*b - 2*b^2)*tan(f*x + e)^4 - (5*a^2 - a*b)*tan(f*x + e)^
2 + 3*a^2)*sqrt(b*tan(f*x + e)^2 + a))/(a^2*f*tan(f*x + e)^5), -1/30*(15*sqrt(a - b)*a^2*arctan(-2*sqrt(b*tan(
f*x + e)^2 + a)*sqrt(a - b)*tan(f*x + e)/((a - 2*b)*tan(f*x + e)^2 - a))*tan(f*x + e)^5 + 2*((15*a^2 - 5*a*b -
 2*b^2)*tan(f*x + e)^4 - (5*a^2 - a*b)*tan(f*x + e)^2 + 3*a^2)*sqrt(b*tan(f*x + e)^2 + a))/(a^2*f*tan(f*x + e)
^5)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \tan ^{2}{\left (e + f x \right )}} \cot ^{6}{\left (e + f x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)**6*(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(e + f*x)**2)*cot(e + f*x)**6, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \tan \left (f x + e\right )^{2} + a} \cot \left (f x + e\right )^{6}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cot(f*x+e)^6*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*cot(f*x + e)^6, x)